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RESEARCH INTERESTS

Resource management in mobile/embedded systems

• Typically heterogeneous multi-core systems with 

numerous operating points/configurations

• Matching to application/user QoE and/or QoS

metric

Self-powered embedded sensing systems

• Typically ultra-constrained MCU systems, with

variable power harvesting and and limited storage

• Matching to system and application requirements

Increasingly, efficient AI as a workload in these domains
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DYNAMIC INFERENCE FOR EFFICIENT EDGE INFERENCE

“Broad brush strokes…”

Acknowledgements

• Lei Xun, Anastasios Dimitriou, Sulaiman Sadiq, Hengrui Zhao, Mingyu Hu, …

• EPSRC Funded Centre for Spatial Computational Learning https://spatialml.net 

Motivation
Dynamic 

Inference

adaptive resource management

reliable distribution

hardware acceleration

on microcontrollers

https://spatialml.net/


5

AI AT THE EDGE

Inference at the Edge

• Increased privacy

• Reliance on network 

connectivity/latency/bandwidth

• Reduced power/energy

The Edge* is Resource Constrained

• DNN models are computationally and 

memory-access intensive.

• Model compression (e.g. pruning, 

quantization, knowledge distillation), 

architecture search, distributed 

networks, frameworks, kernels, etc).

* Referring to the mobile/embedded edge in this presentation

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking Model Scaling for Convolutional Neural 
Networks." International conference on machine learning. PMLR, 2019.

Lin, Ji, et al. "Mcunet: Tiny Deep Learning on IoT Devices.” 
Advances in Neural Information Processing Systems 33, 2020
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DYNAMIC RESOURCE AVAILABILITY

• Model compression trades-off accuracy and latency (hardware-dependent)

• Modern heterogeneous platforms are dynamic:

– Dynamic Hardware and Runtime Conditions (moving trade-off curve)

– Dynamic Application Requirements (moving performance targets)

The most accurate model 

under the latency target
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L. Xun, L. Tran-Thanh, B. M. Al-Hashimi, and G. V. Merrett, “Optimising Resource Management for Embedded Machine Learning” in De sign, Automation & Test in Europe Conference (DATE), 2020.

W. Lou, L. Xun, A. Sabet, J. Bi, J. Hare, and G. V. Merrett, “Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms” in CVPRW, 2021.
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DYNAMIC/ADAPTIVE INFERENCE

• We need models that can adapt to platform/resource and workload diversity, to:

– adapt to available system resources

– adapt to application requirements

– improve model reuse on similar platforms
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L. Xun, L. Tran-Thanh, B. M. Al-Hashimi, and G. V. Merrett, “Optimising Resource Management for Embedded Machine Learning” in Design, Automation & Test in Europe Conference (DATE), 2020.
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DYNAMIC DNNS

• Width scaling

• Dynamic bit-width/quantisation

• Channel scaling

• Resolution scaling

S. Teerapittayanon, B. McDanel, and H.T. Kung, “BranchyNet: Fast 

inference via early exiting from deep neural networks” in ICPR, 2016.

J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable Neural Networks” in ICLR, 2019.

Max Sponner, Bernd Waschneck, and Akash Kumar. 2024. Adapting Neural Networks at Runtime: Current

Trends in At-Runtime Optimizations for Deep Learning. ACM Comput. Surv. 56, 10, Article 248 (May 2024)

J. Yu and T. Huang, “Universally slimmable networks and improved training techniques” ICCV, 2019.
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• Incremental training with group convolution pruning

• Adapted AlexNet (~320kB) on CIFAR10

• Odroid XU3 (4x A15 + 4x A7) + Nvidia Jetson Nano (4x Arm A57 + 128x Maxwell CUDA cores)

OUR EARLY WORK

L. Xun, L. Tran-Thanh, B. M. Al-Hashimi and G. V. Merrett, "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms," 2019 ACM/IEEE 1st 

Workshop on Machine Learning for CAD (MLCAD), Canmore, AB, Canada, 2019, pp. 1-6
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DYNAMIC OFA

Issues with dynamic networks

• Significant training time cost

• Conflict with the SOTA NAS model pipeline

• Inference inefficient on heterogeneous resources

– GPUs prefer shallow and wide DNN architectures.

– CPUs prefer deep  and  narrow  DNN  architectures.

C. Han, L. Zhu, and S. Han, "ProxylessNAS: Direct neural architecture search on target task and hardware" in ICLR, 2019. H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one 

network and specialize it for efficient deployment“ in ICLR, 2020.

Once-for-all

• Train model once for 10^19 sub-networks 

with different accuracy-latency trade-offs

• Model architecture changes at a fine level 

(i/p resolution, kernel size, layer, channel)

• Runtime search not feasible (and existing 

search designed for finding one model)
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DYNAMIC OFA

• Dynamic DNNs + Once-for-all = small number of best architectures

W. Lou et al., "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms," in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104-3112

GPUs prefer shallow and wide DNN 

architectures, while CPUs prefer deep  and  

narrow  DNN  architectures. So separated 

sampling is conducted.
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Model1 Model2 Model3

1 model with N 

subnetworks that share 

weights

3 models with 3 set of weights

ACCURACY-LATENCY TRADE-OFF

W. Lou et al., "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms," in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104-3112

[2] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and specia lize it for efficient deployment” in ICLR, 2020.

[6] T. Yang, S. Zhu, C. Chen, S. Yan, M. Zhang, and A. Willis, “MutualNet: Adaptive convnet via mutual learning from network width and resolution” in ECCV, 2020.

[5] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks” in ICLR, 2019.

[12] J. Yu and T. Huang, “Universally slimmable net-works and improved training techniques” in ICCV, 2019.

[13 J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search for channel numbers” in arXiv 1903.11728, 2019.

(a) GPU (b) Single-Core CPU
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DYNAMIC TRANSFORMERS

• Also extended the idea to Dynamic-HAT, using 

Hardware-Aware Transformers (HAT) as a backbone.

     

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, S. Han, “HAT: Hardware -Aware Transformers for Efficient Natural Language Processing” in ACL, 2020.

H. Parry, L. Xun, A. Sabet, J. Bi, J. Hare and G. V. Merrett, "Dynamic Transformer for Efficient Machine Translation on Embedded Devices," 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), Raleigh, NC, USA, 2021, pp. 1 -6
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RUNTIME ADAPTATION

• Using approaches from previous work (PRiME), we could look at how to adapt and 

respond to changes.

Two Dynamic-

OFAs give ‘space’ 

to each other

2 Dynamic-OFA models share the GPU

The app starts and 

Dynamic-OFA 

become slower

Dynamic-OFA model shares GPU with App

W. Lou et al., "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms," in  

2021 IEEE/CVF Conference on Computer V ision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104 -3112
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• A Fluid Dynamic DNN model trained by incremental training, reducing 

dependencies between sub-networks and enhancing reliability and adaptability.

L. Xun, M. Hu, H. Zhao, A. K. Singh, J. Hare and G. V. Merrett, "Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inf erence on Edge Devices," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 

2024, pp. 1-2

Model configurations:

Static DNN: ABCD

Dynamic DNN:
1. A

2. AB
3. ABC
4. ABCD

Fluid Dynamic DNN:

1. A
2. AB
3. ABC*

4. ABC*D*
5. C*

6. C*D*

IMPROVING RELIABILITY IN DISTRIBUTED DNNS
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INITIAL RESULTS

• Small DNN, MNIST dataset, evaluated on the CPU of Nvidia Jetson Xavier NX platform.

Static DNN fails when any device fails 

Dynamic DNN can still work when worker device fails, 

i.e. run the 50% model on the Master device at 

reduced accuracy but increased throughput

• Fluid Dynamic DNN can still work when any 

one devices fails, i.e. run the 50% model

• High-Throughput (HT) mode and High-

Accuracy (HA) mode when no device fails

L. Xun, M. Hu, H. Zhao, A. K. Singh, J. Hare and G. V. Merrett, "Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inf erence on Edge Devices," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 

2024, pp. 1-2
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ACCELERATING DYNAMIC NETWORKS

• The backbone network, 

which is the ‘static’ original 

network. 

• The intermediate classifiers, which are 

typically placed between layers and decide the 

parts of the DNN to be executed.

Are the advantages of dynamic networks realised on accelerated hardware?

• Input-dependent early-exit networks

A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

A. Dimitriou, B. Biggs, J. Hare and G. V. Merrett, "FPGA Acceleration of Dynamic Neural Networks: Challenges and Advancements,"2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS), London, United Kingdom, 2024
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DECISION SUB-NETWORK DESIGN

Sequential Execution

✓ Reuses existing IP; lower area (and hence power) needs

✗ Increased latency when full depth is required 

✗ Requires the intermediate output to be stored in memory

Parallel Execution

✓ No latency drop of the backbone execution

✓ Lower memory requirements

✗ Higher area (and hence power) requirements

A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
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ACCELERATING DYNAMIC NETWORKS - RESULTS

• VGG19 with BranchyNet on Cifar-10; Zynq UltraScale+ FPGA

• Similar trends across LeNet-5 (MNIST), AlexNet (CIFAR10), ResNet32 (CIFAR100) – for the latter, parallel 20% faster for 11% more energy

S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast inference via early exiting from deep neural networks,” ICPR, 2016.

Early-exiting speeds up inference by at least 1.4x, with less than 1.5% loss of accuracy FPGA energy consumption reduced by 1.8x, 

despite the increase in power consumption.

Parallel 13% faster 

than pipeline

Parallel consumes 

10% more energy 

than pipeline

A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE TCAD
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Available power 

varies over time 

and space

Typical operating pattern

V
C

C
Dynamic DNNs-

adapt to power 

constraints

DYNAMIC INFERENCE ON MCUS

Can Dynamic Inference be effectively applied to MCUs?

• Constrained MCU-based systems powered from the environment

– With minimal energy storage, the system operates intermittently

• Can dynamic DNNs offer a performance/latency trade-off for MCUs?

• Can we utilize this to enable systems to meet inference deadlines under 

variable/intermittent supply?

Zhao, Hengrui, Xun, Lei, Chauhan, Jagmohan and Merrett, Geoff (2024) Power- and deadline-aware dynamic inference on intermittent computing systems. In 2025 Design, Automation &amp; Test in Europe Conference &amp; Exhibition. IEEE. 7 

pp . (In Press)
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DYNAMIC INFERENCE ON MCUS: DualAdaptNet

• Four widths: Conv kernels divided into 4 groups

• Two depths: Exit 1 & Exit 2

Zhao, Hengrui, Xun, Lei, Chauhan, Jagmohan and Merrett, Geoff (2024) Power- and deadline-aware dynamic inference on intermittent computing systems. In 2025 Design, Automation &amp; Test in 

Europe Conference &amp; Exhibition. IEEE. 7 pp . (In Press)
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RECONSIDERING THE MCU DESIGN SPACE

S. Sadiq, J. Hare, S. Craske, P. Maji and G. Merrett, "Enabling ImageNet-Scale Deep Learning on MCUs for Accurate and Efficient Inference," in IEEE Internet of Things Journal, vol. 11, no. 7, pp. 11471-11479, 1 April1, 2024

Sadiq, S., Hare, J., Merrett, G., Prasun, P., & Craske, S. J. (2024). U.S. Patent Application No. 17/813,396.

Internal TinyOps External

Accelerate

A
cc

u
r
a
cy

Latency

• Majority of existing MCU approaches are 

constrained by the size of internal memory

• TinyOps enables MCU inference of large models in 

external memory with internal memory like latency

• ImageNet classification with 6% higher accuracy 

and 2.1x low inference latency
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CONCLUSIONS

• Efficient DNN deployment demands anticipating 

runtime changes, not just initial optimization.

• Dynamic DNNs enable flexibility and offer 

benefits, but highlight need for adaptable 

hardware, compilers, mapping, etc.

• We need improved approaches to manage 

resources in systems while providing

acceptable performance

 Companies will learn to make trade-offs between
 accuracy and computational efficiency, though that will 

have unintended, and antisocial, consequences too 

John Naughton: Emeritus Professor of the Public Understanding of Technology at the Open University

Photo by Patrick Schneider on Unsplash

“
”

https://unsplash.com/@patrick_schneider?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/augmented-reality?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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YOUR QUESTIONS

Professor Geoff Merrett

e:  gvm@ecs.soton.ac.uk

w: www.geoffmerrett.co.uk

  @g_merrett
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