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RESEARCH INTERESTS

Resource management in mobile/embedded systems _

n GPU

- Typically heterogeneous multi-core systems with ‘

numerous operating points/configurations S = fggfg _ ' B
: . = I
« Matching to application/user QoE and/or QoS nDeviee I < _ 5

metric Cores £

Self-powered embedded sensing systems

« Typically ultra-constrained MCU systems, with
variable power harvesting and and limited storage

« Matching to system and application requirements

lAmbient E

Energy Power
Harvester Controller

Increasingly, efficient Al as a workload in these domains 5= V*L_T '
Energy |EEH J( Ery| MCU and
Storage Evw. Radio 3
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DYNAMIC INFERENCE FOR EFFICIENT EDGE INFERENCE

“Broad brush strokes...”

adaptive resource management

Dynamic reliable distribution

Motivation
Inference

hardware acceleration

on microcontrollers
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Al AT THE EDGE

Inference at the Edge
* Increased privacy

FINANCIAL TIMES [EE

ION WORK & CAREERS LIFE

UK COMPANIES TECH MARKETS GRAPHICS OPIN

&ARTS HOW TO SPEND

« Reliance on network
connectivity/latency/bandwidth s IR
health data?

« Reduced power/energy

The technology company will need to persuade patients to hand over some of thei
personal information

The Edge* is Resource Constrained = E
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Should data be crunched at the
centre or at the edge?

“Edge computing” is on the rise
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NEEA down in Las Vegas. iy
Or et s A e Creating an Al can be five times
oo oot i worse for the planet than a car
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« DNN models are computationally and
memory-access intensive.

 Model compression (e.g. pruning,
quantization, knowledge distillation),
architecture search, distributed
networks, frameworks, kernels, etc).
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(a) baseline

(b) width scaling

(c) resolution scaling

Efficient Neural Architecture

Efficient Complier / Runtime

TinyEngine

“+ higher
i resolution

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking Model Scaling for Convolutional Neural

Networks." International conference on machine learning. PMLR, 2019.

* Referring to the mobile/embedded edge in this presentation

Lin, Ji, etal. "Mcunet: Tiny Deep Leaming on loT Devices.”
Advances in Neural Information Processing Systems 33, 2020
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DYNAMIC RESOURCE AVAILABILITY

« Model compression trades-off accuracy and latency (hardware-dependent)

« Modern heterogeneous platforms are dynamic:
— Dynamic Hardware and Runtime Conditions (moving trade-off curve)
— Dynamic Application Requirements (moving performance targets)

—[\Vorkload GPU freq Workload CPU freq
More available Less available A | DNN 1.1 GHz E | DNN 1.4 GHz
resource resource B | DNN 803 MHz F  DNN 1.2 GHz
Accuracy + |CIDNN+1App|L1 GHz G | DNN + 1App 1.4 GHz
D | DNN + 1 App |803 MHz T H DNN+1App 1.2 GHz
: _8r 7 1600 A
1 = 7 —~
: st Z,
! % 60 |- Z 1200t G
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: & WAL ) .Required B
H '4;‘ 40 latency : 800 L
i b (:). Lk __lZ@ P .. Required
------------ *: % é ]ntency
5 Z 20 — 400
Target ’ Latency ~
- - -
The most accurate model GPU Workload CPU Workload
under the latency target
y targ (a) (b)

L. Xun, L. Tran-Thanh, B. M. Al-Hashimi, and G. V. Merrett, “Optimising Resource Management for Embedded Machine Learning” in Design, Automation & Test in Europe Conference (DATE), 2020.
W. Lou, L. Xun, A. Sabet, J. Bi, J. Hare, and G. V. Merrett, “Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms” in CVPRW, 2021.
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DYNAMIC/ADAPTIVE INFERENCE

« We need models that can adapt to platform/resource and workload diversity, to:

— adapt to available system resources
latency
— adapt to application requirements L meeting power/energy requirements
: . accuracy
— improve model reuse on similar platforms

—

Pruning
Quantization -
Hardware-aware model design Application
Distribution
I Knobs Monitor
Compilation _
Mapping I
Knobs f Monitor

Hardware

CPU, GPU
Accelerators

Static I Dynamic

L. Xun, L. Tran-Thanh, B. M. Al-Hashimi, and G. V. Merrett, “Optimising Resource Management for Embedded Machine Learning” in Design, Automation & Test in Europe Conference (DATE), 2020.



UNIVERSITY OF
Southampton

DYNAMIC DNNS

« Width scaling
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« Dynamic bit-width/quantisation

0.25x%
J. Yy, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable Neural Networks” in ICLR, 2019.

« Channel scaling

« Resolution scaling

Linear
> 1
% Linear
5 651 Y
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g Conv 3x3
~ 1
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= 554 i
St Conv 5x5
<Nl —e— US-MobileNet v1 (single model) I_ Conv 3x3 H Conv 3x3 -m
50 O ® MobileNet v1 (four individual models)
Cat Dog S
T T T r r Conv 5x5
100 200 300 400 500 I
Millions of Multiply-Adds (MFLOPs)
J. Yu and T. Huang, “Universally slimmable networks and improved training techniques” ICCV, 2019. S. Teerapittayanon, B. McDanel, and H.T. Kung, “BranchyNet: Fast

inference via early exiting from deep neural networks” in ICPR, 2016.

Max Sponner, Bernd Waschneck, and Akash Kumar. 2024. Adapting Neural Networks at Runtime: Current
Trends in At-Runtime Optimizations for Deep Learning. ACM Comput. Surv. 56, 10, Article 248 (May 2024) 8



Southampton
OUR EARLY WORK

* Incremental training with group convolution pruning
« Adapted AlexNet (~320kB) on CIFAR10
e Odroid XU3 (4x A15 + 4x A7) + Nvidia Jetson Nano (4x Arm A57 + 128x Maxwell CUDA cores)

Energy consumption/image (mJ)

45 1 350 » 75 »
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) X
A A ~ 250 A x
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L. Xun, L. Tran-Thanh, B. M. Al-Hashimi and G. V. Merrett, "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms," 2019 ACM/IEEE 1st
Workshop on Machine Learning for CAD (MLCAD), Canmore, AB, Canada, 2019, pp. 1-6
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DYNAMIC OFA
Issues with dynamic networks Once-for-all
« Significant training time cost « Train model once for 10A19 sub-networks
. Conflict with the SOTA NAS model pipeline with different accuracy-latency trade-offs
. Inference inefficient on heterogeneous resources ° Model architecture changes at a fine level
— GPUs prefer shallow and wide DNN architectures. (i/p resolution, kernel size, layer, channel)
— CPUs prefer deep and narrow DNN architectures.  Runtime search not feasible (and existing

search designed for finding one model)

train a once-for-all network

Nacinn Mnct

SL P X

| direct deploy |, (no retrain) |,

E ac D ; :Tiny Al
(c) Efficient mobile model found by ProxylessNAS. T Cloud Al Mobile Al -~ (AloT)
C. Han, L. Zhu, and S. Han, "ProxylessNAS: Direct neural architecture search on target task and hardware" in ICLR, 2019. H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one

network and specialize it for efficient deployment”in ICLR, 2020. 10



DYNAMIC OFA

Dynamic DNNs + Once-for-all = small number of best architectures

Offline

Class of efficient sub-

Pre-trained OFA network

Sampling——— —  Sampling

# filters

cPU CPU Lat and i GPU GPU Lat
sub-neworks CPU latency  Accuracy A:'c <l Sub-network architecture subnetworks | GPU :Iglency Accg_racy ey
search predictor predictor B search search predictor predictor constraints

_______ - —— e Y -
DI- Acc:78%, Lat: 300 ms  Acc:77%, Lat: 250 ms Ace:75%, Lat: 200 ms I rAcchS%‘ Lat:120ms  Acci74%, Lat: 80 ms Acc:72%, Lat:60 ms -g
3l - 2
5| I |
Y o—— | o X
%l | 0 | I | ;
I:| Sub-Net 1 Sub-Net 2 Sub-Netn | | Sub-Net1 Sub-Net 2 Sub-Netn |3

networks for GPU

Online

CPU Available DNN Acc and g A GPU Available
Dynamicora DNN latency ~ NEIERE o Runtime Dynamic-OFA Dynamic.ora DNNlatency ~ “Nated® DNNAce and

management [N monitor requirements management management  monitor monitor requirements

Frequency: 200MHz-1.5GHz h NN Frequency: 300MHz-1.1GHz
#Available cores: 1-4 SOC #Available cores : 1-6 Streaming
Multiprocessor
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74 e Optimal networks
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Latency (ms)

GPUs prefer shallow and wide DNN
architectures, while CPUs prefer deep and
narrow DNN architectures. So separated
sampling is conducted.

W. Lou et al., "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms," in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104-3112

11



ACCURACY-LATENCY TRADE-OFF

Topl-accuracy (%)

(a) GPU
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554 e MutualNet MBv1 [&] (dynamic)

. MutualNet MBv2 [6] (dynamic)

® Slimmable MBv1 [5] (dynamic)
50 T o US-Slimmable MBwl [12] {dynamic)
# US-Slimmable MBv2 [12] {dynamic)
45 - & AutoSlim MnasNet [13] (dynamic)
40 60 80 100 120 140 160

Latency (ms)
[2] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Trgn one network and specialize it for efficient deployment”in ICLR, 2020.

[6] T. Yang, S. Zhu, C. Chen, S. Yan, M. Zhang, and A. Willis, “MutualNet: Adaptive convnet via mutual learning from network width and resolution” in ECCV, 2020.
[51J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks” in ICLR, 2019.

[12] ). Yu and T. Huang, “Universally slimmable net-works and improved training techniques” in ICCV, 2019.
[13J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search for channel numbers” in arXiv 1903.11728, 2019.
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subnetworks that share
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3 models with 3 set of weights
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W. Lou et al., "Dynamic-OFA: Runtime DNN Architecture Switching for Performance Scaling on Heterogeneous Embedded Platforms," in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104-3112

12



DYNAMIC TRANSFORMERS

Also extended the idea to Dynamic-HAT, using

Hardware-Aware Transformers (HAT) as a backbone.

« {512, 640} input embedding dimensions for the en-
coder/decoder

{1024, 2048, 3072} number of hidden FFN dimensions
{4, 8} number of attention heads in each Multi-Head
Attention sub-layer

{1, 2, 3, 4, 5, 6} number of decoder layers

{-1, 1, 2} for arbitrary encoder-decoder attention: -1
means attending to last one encoder layer, 1 means last
two encoder layers, 2 means last three encoder layers.

@

Train Large
SuperTransformer
Design Space

@ _\/\‘d}}—\%‘
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Target Hardware

Inherited Inherited BLEU

Latency Constraint validation Loss Score

Latency
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o i P
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Latency: 5.89s Latency: 994ms

Model 1

BLEU: 23.36
Latency: 356ms

GPU Dynamic Operating Points

(5) Train new
SuperTransformer
with smaller design
space (specific to
family of similar
hardware).

H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, S. Han, “HAT: Hardware-Aware Transformers for Efficient Natural Language Processing” in ACL, 2020.
H. Parry, L. Xun, A. Sabet, J. Bi, J. Hare and G. V. Merrett, "Dynamic Transformer for Efficient Machine Translation on Embedded Devices," 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), Raleigh, NC, USA, 2021, pp. 1-6
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RUNTIME ADAPTATION

« Using approaches from previous work (PRiME), we could look at how to adapt and
respond to changes.

Dynamic-OFA model shares GPU with App 2 Dynamic-OFA models share the GPU
657 .
70 Two Dynamic-
- X OFAs give ‘space’
€ 601 +-—-—---rF-tr-—-- — - 0
£ Eos| Y] to each other
>
O >
c o
£ 551 S
S The app starts and 60
c .
8, Dynamic-OFA c
=
become slower 1R
—— Dynamic-OFA A (Config-6 to Config-5)
—— Dynamic-OFA B (Config-5 to Config-4)
45 ~== Target for model A: 65ms
0 2000 4000 6000 8000 10000 12000 5Q{ =7 Teroetformodel B Soms | |
Time (ms) 0 2000 4000 6000 8000 10000
--= Target for model: 60 ms —— Config-3 Accuracy 76.1% Time (ms)
—*— Add plant classification application Config-2 Accuracy 74.9% W. Lou etal., "Dynamic-OFA: Runtime DNN'Architecture Switching f.or Performance Scaling on Heterggeneous Embedded Platforms," in 14
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 3104-3112

Config-4 Accuracy 77.5%
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IMPROVING RELIABILITY IN DISTRIBUTED DNNS

-

Dynamic DNN

ABC

(" Static DNN\\

ABCD

Fluid Dynamic DNN )
P c*-'"-\. LA c* D*

Model configurations:

Static DNN: ABCD

(a) Dynamic DNN: High Accuracy
1. A
Y S500 G5 2. AB 58 | | &0
\_ U 100% ) ) Upper25% Upper 50% Y 3. ABC
______________________________________ —_ 4 ABCD
v (b) Worker (right) device fails ) r’, (c) Master (left) device fails A
N eaYe e \ (OO N w ‘ \ : Fluid Dynamic DNN:
! E i : 1. A High Throughput
E X i 2. AB AB c*D*
: X \ 3. ABC*
7)) asJen) aBleny ! _ ABJ/lcp) ABNEDp): 4 ABCOD*
. XStatic_ /7 Dynamic__ +/Fluid___ ' _StaticX DynamicX_ ____ Flud+7 .- 5 C*
6. C*D*
* A Fluid Dynamic DNN model trained by incremental training, reducing
dependencies between sub-networks and enhancing reliability and adaptability.
L. Xun, M. Hu, H. Zhao, A. K. Singh, J. Hare and G. V. Merrett, "Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge Devices," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 15

2024, pp. 1-2
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INITIAL RESULTS

« Small DNN, MNIST dataset, evaluated on the CPU of Nvidia Jetson Xavier NX platform.

* Fluid Dynamic DNN can still work when any
Dynamic DNN can still work when worker device fails, one devices fails, i.e. run the 50% model
i.e. run the 50% model on the Master device at * High-Throughput (HT) mode and High-
reduced accuracy but increased throughput Accuracy (HA) mode when no device fails

35

100 98.9 oss ~
99 | >0 e L 30 28.3
98 %
2 25
o0 € Master & Worker
96 = 20 |
o 5 15 14.4 144139  mOnly Master
94 o 11.1 111 11.1
=
93 g> 10 Only Worker
92 E .
91 L
F [
90 -_ HT HA 0 ) . HT HA .
Static Dynamic Fluid Static Dynamic Fluid

Statlc DNN fails when any device fails /

L. Xun, M. Hu, H. Zhao, A. K. Singh, J. Hare and G. V. Merrett, "Fluid Dynamic DNNs for Reliable and Adaptive Distributed Inference on Edge Devices," 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), Valencia, Spain, 16
2024, pp. 1-2
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ACCELERATING DYNAMIC NETWORKS

Are the advantages of dynamic networks realised on accelerated hardware?

* Input-dependent early-exit networks

« The backbone network,  The intermediate classifiers, which are
which is the ‘static’ original typically placed between layers and decide the
network. parts of the DNN to be executed.

DMA Controller ‘H ARM
e
¥

; CORTEX
: I T A53
u r l .T f 3 L J
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‘ O
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o :[l i B =
% § ,JKP_EJ—PLE m P.E F. PE4|_’ 3 — | Z:;!
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5 = [RIIAT]  y Sa . gf — POOL a
Earl I JEREEy N e | B
y - |Upe) e e | B O

1 ol =t el o
Exit B T LEg |
LJ L o =J o _]

- DATA - CONTROL

A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
A. Dimitriou, B. Biggs, J. Hare and G. V. Merrett, "FPGA Acceleration of Dynamic Neural Networks: Challenges and Advancements,"2024 |IEEE International Conference on Omni-layer Intelligent Systems (COINS), London, United Kingdom, 2024
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DECISION SUB-NETWORK DESIGN

Sequential Execution s j ..... o

v Reuses existing IP; lower area (and hence power) needs

Er ______ i
X Increased latency when full depth is required 7 i
o FC |
X Requires the intermediate output to be stored in memory vi |
£ ﬁLyes i
S J

Parallel Execution
v" No latency drop of the backbone execution

v' Lower memory requirements

X Higher area (and hence power) requirements

Intermediate classifier
i
- —
~
(1]
m;
=<

A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18



ACCELERATING DYNAMIC NETWORKS - RESULTS

 VGG19 with BranchyNet on Cifar-10; Zynqg UltraScale+ FPGA
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Early-exiting speeds up inference by at least 1.4x, with less than 1.5% loss of accuracy FPGA energy consumption reduced by 1.8,

Similar trends across LeNet-5 (MNIST), AlexNet (CIFAR10), ResNet32 (CIFAR100) - for the latter, parallel 20% faster for 11% more energy

despite the increase in power consumption.

S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast inference via early exiting from deep neural networks,” ICPR, 2016.
A. Dimitriou, L. Xun, J. Hare and G. V. Merrett, "Realisation of Early-Exit Dynamic Neural Networks on Reconfigurable Hardware," in IEEE TCAD
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DYNAMIC INFERENCE ON MCUS

Can Dynamic Inference be effectively applied to MCUs?

« Constrained MCU-based systems powered from the environment

— With minimal energy storage, the system operates intermittently

O
O
> : . .
Execution Typical operating pattern
fon
EE— [ RS SRR FE U
Y e ' P .
Available power ,,/ / '\ /A Dynamic DNNs-
varies over time :> / -\ y |:> adapt to power
and space / / / ./ \ constraints
/ \ / v/ -\\
\/ f N/ '\_
SRR R R Y AR L. St R EAEL Y Sy § R RAR: \
ofT
Time

« Can dynamic DNNs offer a performance/latency trade-off for MCUs?

« Can we utilize this to enable systems to meet inference deadlines under
variable/intermittent supply?

Zhao, Hengrui, Xun, Lei, Chauhan, Jagmohan and Merrett, Geoff (2024) Power- and deadline-aware dynamic inference on intermittent computing systems. In 2025 Design, Automation &mp; Test in Europe Conference & mp; Exhibition. IEEE. 7
pp - (In Press)

20



DYNAMIC INFERENCE ON MCUS: DualAdaptNet

Input Image

-
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Zhao, Hengrui, Xun, Lei, Chauhan, Jagmohan and Merrett, Geoff (2024) Power- and deadline-aware dynamic inference on intermittent computing systems. In 2025 Design, Automation &mp; Test in
Europe Conference &amp; Exhibition. IEEE. 7 pp . (In Press)
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RECONSIDERING THE MCU DESIGN SPACE

| DMA Copy, SRC =>DST |

UNIVERSITY OF

Southampton

 Majority of existing MCU approaches are e
constrained by the size of internal memory SENE SN N —— S S
| AvgPool2a |§ | AvgPool2b | §| AvgPool2c |

« TinyOps enables MCU inference of large models in
external memory with internal memory like latency

« ImageNet classification with 6% higher accuracy

and 2.1x low inference latency
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S. Sadiq, J. Hare, S. Craske, P. Maji and G. Merrett, "Enabling ImageNet-Scale Deep Learning on MCUs for Accurate and Efficient Inference,” in IEEE Internet of Things Journal, vol. 11, no. 7, pp. 11471-11479, 1 Aprill, 2024
Sadiq, S., Hare, J., Merrett, G., Prasun, P., & Craske, S. J. (2024). U.S. Patent Application No. 17/813,396.
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CONCLUSIONS

« Efficient DNN deployment demands anticipating
runtime changes, not just initial optimization.

« Dynamic DNNs enable flexibility and offer
benefits, but highlight need for adaptable | e e
hardware, compilers, mapping, etc. P S5

[amm

 We need improved approaches to manage
resources in systems while providing
acceptable performance

66 Companies will learn to make trade-offs between
accuracy and computational efficiency, though that will
have unintended, and antisocial, consequences too 99

John Naughton: Emeritus Professor of the Public Understanding of Technology at the Open University
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